Calculating The Characteristic Impedance Of Finlines By | Calculating The Characteristic Impedance Of Finlines By | 9be4288e8cae8729c5f2367f6f7c659a

This proceedings contains papers presented at the 5th International Conference on Applied Electrostatics held in Shanghai, China on November 2--5,2004. The ICAES 2004 Conference is of wide interest, as is shown by the contributions received from 11 countries and districts throughout the world. About 90 researchers attend the conference and more than 100 papers were submitted for presentation in the proceedings. The paper sessions covered following topics: fundamentals and physics applications (precipitation, pollution control, spray, separation, material, Ozone, etc.) hazards and problems biology technology electrets measuring technology electromagnetic compatibility and others These papers demonstrated recent research level and developing trends of the entire electrostatic field.

This is an exciting career path which thousands of engineers get attracted to readily. This book shall enable the readers to familiarise themselves with the basics of PCB Design- an integral part of the product design cycle. This book is the first in the series of books that have been planned on electronic product design is done from an industry perpective. PCB designing is an exciting career prospect for the budding engineer and this book shall enables you to become one. This book is not meant to be just a textbook but also as a ready reckoner for PCB design eneginers.

The fundamentals of microwave and wireless communications technology are critical to the telecommunications and data acquisitions fields. Because many of the new developments involve commonly available equipment such as cellular telephones and satellite dishes, technicians as well as engineers must learn the basics of the technology. Microwave and Wireless Communications Technology offers a practical, device-based approach to the study of microwave and wireless communications. Student objectives, numerous questions and problems, and end-of-chapter summaries reinforce the theory in each chapter. Answers to odd-numbered questions are provided in the back of the book. Math is kept to the lowest practical level, and the last section of each chapter is a collection of the key equations laid out for the student. A Windows diskette with supplementary instructor material is available on request with adoption. Fundamentals of microwave and wireless communications Written for Electronics Engineering Technician courses

The Computer Science and Communications Dictionary is the most comprehensive dictionary available covering both computer science and communications technology. A one-of-a-kind reference, this dictionary is unmatched in the breadth and scope of its coverage and is the primary reference for students and professionals in computer science and communications. The Dictionary features over 20,000 entries and is noted for its clear, precise, and accurate definitions. Users will be able to: Find up-to-the-minute coverage of the technology trends in computer science, communications, networking, supporting protocols, and the Internet; find the newest terminology, acronyms, and abbreviations available; and prepare precise, accurate, and clear technical documents and literature.
This book describes the basic principles of designing and modelling inductors, MIM capacitors and coplanar waveguides at frequencies of several tens of GHz. The author explains the design and modelling of key, passive elements, such as capacitors, inductors and transmission lines that enable high frequency MEMS operating at frequencies in the orders of tens of GHz.

This thorough review of the fundamental principles associated with signal integrity provides engineering principles behind signal integrity effects, and applies this understanding to solving problems.

This book is a dedicated resource for those sitting the Part A of the MCEM (Membership of the College of Emergency Medicine) examination. It forms an essential revision guide for emergency trainees who need to acquire a broad understanding of the basic sciences, which underpin their approach to clinical problems in the emergency department. Common clinical scenarios are used to highlight the essential underlying basic science principles, providing a link between clinical management and a knowledge of the underlying anatomical, physiological, pathological and biochemical processes. Multiple choice questions with reasoned answers are used to confirm the candidates understanding and for self testing. Unlike other recent revision books which provide MCQ questions with extended answers, this book uses clinical cases linked to the most recent basic science aspects of the CEM syllabus to provide a book that not only serves as a useful revision resource for the Part A component of the MCEM examination, but also a unique way of understanding the processes underlying common clinical cases seen every day in the emergency department. This book is essential for trainees sitting the Part A of the MCEM exam and for clinicians and medical students who need to refresh their knowledge of basic sciences relevant to the management of clinical emergencies.

"E-health is closely related with networks and telecommunications when dealing with applications of collecting or transferring medical data from distant locations for performing remote medical collaborations and diagnosis. In this book we provide an overview of the fields of image and signal processing for networked and distributed e-health applications and their supporting technologies. The book is structured in 10 chapters, starting the discussion from the lower end, that of acquisition and processing of biosignals and medical images and ending in complex virtual reality systems and techniques providing more intuitive interaction in a networked medical environment. The book also discusses networked clinical decision support systems and corresponding medical standards, WWW-based applications, medical collaborative platforms, wireless networking, and the concepts of ambient intelligence and pervasive computing in electronic healthcare systems."--Publishers' Website.

The NAB Engineering Handbook is the definitive resource for broadcast engineers. It provides in-depth information about each aspect of the broadcast chain from audio and video contribution through an entire broadcast facility all the way to the antenna. New topics include Ultra High Definition Television, Internet Radio Interfacing and Streaming, ATSC 3.0, Digital Audio Compression Techniques, Digital Television Audio Loudness Management, and Video Format and Standards Conversion. Important updates have been made to incumbent topics such as AM, Shortwave, FM and Television Transmitting Systems, Studio Lighting, Cameras, and Principles of Acoustics. The big-picture, comprehensive nature of the NAB Engineering Handbook will appeal to all broadcast engineers—everyone from broadcast chief engineers, who need expanded knowledge of all the specialized areas they encounter in the field, to technologists in specialized fields like IT and RF who are interested in learning about unfamiliar topics. Chapters are written to be accessible and easy to understand by all levels of engineers and technicians. A wide range of related topics that engineers and technical managers need to understand are covered, including broadcast documentation, FCC practices, technical standards, security, safety, disaster planning, facility planning, project management, and engineering management.

Carrier communication over power lines, like carrier traffic over postal lines, has a tradition of about 50 years. It has become a vital element in electric system operation. Being restricted to power networks, it has a comparatively limited scope. Nevertheless, great efforts are being ex to keep pace with the demands made pended on technical advancement of both power and communication engineering. As in previous editions of this book, it is endeavored in the fourth edition to familiarize the man in the field with the fundamental concepts on which this technique and its practical application are based. The physical and electrical characteristics of the equipment involved are de scribed in a general way. For the sake of clarity, the author has refrained from giving a detailed account or illustrations of special versions, espe cially as the differences between the equipment supplied by the various manufacturers are so small. This is due to the use of transistors instead of tubes and to the universally adopted plug-in module construction technique. In the load dispatching plants of power supply networks, tele metering systems are turning more
and more to data engineering methods and equipment to lighten the task of network management. Consequently, at certain points in the text, topics concerning remote data processing are treated, emphasis being placed on transmission channels operating at a considerably higher speed than was usual 10 years ago.

The packaging of electronic devices and systems represents a significant challenge for product designers and managers. Performance, efficiency, cost considerations, dealing with the newer IC packaging technologies, and EMI/RFI issues all come into play. Thermal considerations at both the device and the systems level are also necessary. The Electronic Packaging Handbook, a new volume in the Electrical Engineering Handbook Series, provides essential factual information on the design, manufacturing, and testing of electronic devices and systems. Co-published with the IEEE, this is an ideal resource for engineers and technicians involved in any aspect of design, production, testing or packaging of electronic products, regardless of whether they are commercial or industrial in nature. Topics addressed include design automation, new IC packaging technologies, materials, testing, and safety. Electronics packaging continues to include expanding and evolving topics and technologies, as the demand for smaller, faster, and lighter products continues without signs of abatement. These demands mean that individuals in each of the specialty areas involved in electronics packaging—such as electronic, mechanical, and thermal designers, and manufacturing and test engineers—are all interdependent on each others knowledge. The Electronic Packaging Handbook elucidates these specialty areas and helps individuals broaden their knowledge base in this ever-growing field.

CD-ROM contains: PUFF 2.1 for construction and evaluation of circuits.

Newnes Circuit Calculations Pocket Book: With Computer Programs presents equations, examples, and problems in circuit calculations. The text includes 300 computer programs that help solve the problems presented. The book is comprised of 20 chapters that tackle different aspects of circuit calculation. The coverage of the text includes dc voltage, dc circuits, and network theorems. The book also covers oscillators, phasors, and transformers. The text will be useful to electrical engineers and other professionals whose work involves electronic circuitry.

The #1 guide to signal integrity, updated with all-new coverage of power integrity, high-speed serial links, and more * * Up-to-the-minute comprehensive guidance: everything engineers need to know to understand and design for signal integrity. * Authored by world-renowned signal integrity trainer, educator, and columnist Eric Bogatin. * Focuses on intuitive understanding, practical tools, and engineering discipline - not theoretical derivation or mathematical rigor. Today's marketplace demands faster devices and systems that deliver more functionality and longer life in smaller packaging. Signal Integrity - Simplified, Second Edition is the first book to bring together all the up-to-the-minute techniques designers need to overcome all of those challenges. Renowned expert Eric Bogatin thoroughly reviews the root causes of all four families of signal integrity problems, and shows how to design them out early in the design cycle. Drawing on his experience teaching 5,000+ engineers, he illuminates signal integrity, physical design, bandwidth, inductance, and impedance; presents practical tools for solving signal integrity problems; and offers specific design guidelines and solutions. In this edition, Bogatin adds extensive coverage of power integrity and high speed serial links: topics at the forefront of signal integrity design. Three new chapters address: * * Designing power delivery networks to support high-speed signal processing. * Using 4-Port S-parameters, the emerging standard for describing interconnects in high speed serial links. * Working with today's measurement and simulation tools and technologies

This book is the first of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 1: Internal Behavior of Lumped Elements focuses upon the DC and low-frequency behavior of electromagnetic fields within lumped elements. The properties of electromagnetic fields provide the basis for predicting the terminal characteristics of resistors, capacitors, and inductors. The properties of magnetic circuits are included as well. For slightly higher frequencies for which the lumped elements are a significant fraction of a wavelength in size the second volume of this set, Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves, examines how the low-frequency models of lumped elements are modified to include parasitic elements. Upon completion of understanding the two volumes of this book, students will have gained the necessary knowledge to progress to advanced studies of electromagnetics.
Hemodynamics makes it possible to characterize in a quantitative way, the function of the heart and arterial system, thereby producing information about what genetic and molecular processes are of importance for cardiovascular function. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education by Nico Westerhof, Nikos Stergiopulos and Mark I. M. Noble is a quick reference guide designed to help basic and clinical researchers as well as graduate students to understand hemodynamics. The layout of the book provides short and independent chapters that provide teaching diagrams as well as clear descriptions of the essentials of basic and applied principles of hemodynamics. References are provided at the end of each chapter for further reading and reference.

The study of circuits is the foundation on which most other courses in the electrical engineering curriculum are based. For this reason the first course in circuit analysis must be appropriate to the succeeding specializations, which may be classified into two groups. One is a specialization in electronics, microelectronics, communications, computers etc., or so-called low current, low-voltage engineering. The other is in power electronics, power systems, energy conversion devices etc., or so-called high-current, high voltage engineering. It is evident that although there are many common teaching topics in the basic course of circuit analysis, there are also certain differences. Unfortunately most of the textbooks in this field are written from the 'electronic engineer's viewpoint', i.e. with the emphasis on low current systems. This brought the author to the conclusion that there is a definite disadvantage in not having a more appropriate book for the specializations in high-current, high-voltage engineering. Thus the idea for this book came into being. The major feature distinguishing this book from others on circuit analysis is in delivering the material with a very strong connection to the specializations in the field of power systems, i.e. in high-current and high voltage engineering. The author believes that this emphasis gives the reader more opportunity for a better understanding and practice of the material which is relevant for power system network analysis, and to prepare students for their further specializations.

One of us (FAB) published a book Problems in Electronics with Solutions in 1957 which became well established and ran to five editions, the last revised and enlarged edition appearing in 1976. When the first edition was written it covered almost the complete undergraduate electronics courses in engineering at universities. One book, at a price students can afford, can no longer cover an undergraduate course in electronics. It has therefore been decided to produce a book covering one important section of such a course using the experience gained and a few problems from previous editions of Problems in Electronics with Solutions. The book is based largely on problems collected by us over many years and given to undergraduate electronic and electrical engineers. Its purpose is to present the problems, together with a large number of their solutions, in the hope that it will prove valuable to undergraduates and other teachers. It should also be useful for Master's degree students in electronic and electrical engineering and physics, research workers, engineers and scientists in industry and as a reference source.

Third edition of one of our most successful undergraduate texts in physics.

This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication. In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering practice. Design rules and working examples illustrate the theoretical parts. The examples are close to real world problems, so the reader can directly transfer the methods within the context of their own work. At the end of each chapter a list of problems is given inorder to deepen the reader's understanding of the chaptematerial and practice the new competences. Solutions are available on the author's website. Key Features: Presents a wide range of RF topics with emphasis on physical aspects e.g. EM and voltage waves, transmission lines, passive circuits, antennas Uses various examples of modern RF tools that show how themethods can be applied productively in RF engineering practice Incorporates various design examples using circuit and electromagnetic (EM) simulation software Discusses the propagation of waves: their representation, their effects, and their utilization in passive circuits and antenna structures Provides a list of problems at the end of each chapter Includes an accompanying website containing solutions to the problems (http://www.fh-dortmund.de/gustrau_rf_textbook) This will be an invaluable textbook for bachelor and masters students on electrical engineering courses (microwave engineering, basic circuit theory and electromagnetic fields, wireless communications). Early-stage RF practitioners, engineers (e.g. application engineer) working in this area will also find this book of interest.
A one-stop desk reference for R&D engineers involved in communications engineering, this book will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the field. Material covers a wide scope of topics, including voice, computer, facsimile, video, and multimedia data technologies. A hard-working desk reference, providing all the essential material needed by communications engineers on a day-to-day basis. Fundamentals, key techniques, engineering best practice and rules-of-thumb together in one quick-reference sourcebook. Definitive content by the leading authors in the field.

A one-stop reference to the major techniques for analyzing microwave planar transmission line structures. The last two decades have seen important progress in the development of methods for the analysis of microwave and millimeter-wave passive structures, which contributed greatly to microwave integrated circuit design while also stimulating the development of new planar transmission lines. This timely and authoritative work introduces microwave engineers to the most commonly used techniques for analyzing microwave planar transmission line structures. Designed to be easily accessible to readers with only a fundamental background in electromagnetic theory, the book provides clear explanations of the theory and applications of Green’s function, the conformal-mapping method, spectral domain methods, variational methods, and the mode-matching methods. Coverage for each method is self-contained and supplemented with problems and solutions as well as useful figures. In addition to providing detailed formulations of the methods under discussion, this highly practical book also demonstrates how to apply the principles of electromagnetic theory to the analysis of microwave boundary value problems, customize methods for specific needs, and develop new techniques. Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures is an excellent working resource for anyone involved in the design and engineering of RF, microwave, and millimeter-wave integrated circuits.

During the 1950s, the United States and the Soviet Union teetered on the brink of nuclear devastation. America’s hope for national security relied solely upon aerial reconnaissance. Radar Man is the fascinating memoir of a physicist who, with his colleagues, developed the stealth technology that eventually created radar-invisible aircraft. Edward Lovick shares a compelling story from the perspective of an enthusiastic scientist that highlights his pioneering experiences in an innovative, secret world as he helped create stealth aircraft such as the A-12 OXCART, SR-71 Blackbird, and F-117 Nighthawk. From the moment in 1957 when Lockheed’s famous aircraft designer Clarence L. ‘Kelly’ Johnson invited Lovick to join his Skunk Works, Lovick details how he helped the CIA eventually perform vital, covert reconnaissance flights over Soviet-held territory during the Cold War, saved Lockheed ADP’s A-12 from cancellation, and provided key design input to the SR-71 and F-117. Lovick’s autobiography describing his career as an engineering physicist in the Skunk Works not only draws attention to the insurmountable challenges that accompanied the task of developing radar-invisible aircraft, but also the importance of the monumental task these young scientists fulfilled all with the hope of creating a secure future for their beloved country.

Electronic Devices and Circuits, Volume 2 provides a comprehensive coverage of the concepts involved in electronic devices and circuits. The text first details the network theory, and then proceeds to covering electronics in the succeeding chapters. The coverage of the book includes transmission lines; high-frequency valves and transistors; amplifiers; oscillators; and multivibrator and trigger circuits. The text also covers several concerns in electronics, such as the physics of semiconductor devices; stabilization of power supplies; and feedback. The book will be of great use to students of electrical engineering and other electronics related degree.

The fourth edition of this classic work on circuit design gives you the understanding and practical know-how to produce optimized, reliable, cost-effective electronic circuits. It bridges the gap between the theoretical learning that most university courses provide and the practical knowledge and application that comes from years of experience. Topics covered include analog and digital circuits, component types, power supplies and printed circuit board design, plus new coverage of the latest advances in electronics since the previous edition published. The Circuit Designer’s Companion is ideal for Professional electronics design engineers, advanced amateur electronics designers, electronic engineering students and professors looking for a book with a real-world design outlook. Updated with new material on: Extreme Environment Design Design for Reliability Wide Band Gap Devices for Power Electronics Provides an invaluable companion for circuit designers and practicing electronics engineers that...
includes best practices Includes practical, real-world considerations for components, PCBs, manufacturability, reliability and cost Contains new material on design tools, high-speed circuits, variability and tolerances, noise, simulation methods and testing

Guru and Hiziroglu have produced an accessible and user-friendly text on electromagnetics that will appeal to both students and professors teaching this course. This lively book includes many worked examples and problems in every chapter, as well as chapter summaries and background revision material where appropriate. The book introduces undergraduate students to the basic concepts of electrostatic and magnetostatic fields, before moving on to cover Maxwell’s equations, propagation, transmission and radiation. Chapters on the Finite Element and Finite Difference method, and a detailed appendix on the Smith chart are additional enhancements. MathCad code for many examples in the book and a comprehensive solutions set are available at www.cambridge.org/9780521830164.

A Convincing and Controversial Alternative Explanation of Metamaterials with a Negative Index of Refraction In a book that will generate both support and controversy, one of the world’s foremost authorities on periodic structures addresses several of the current fashions in antenna design—most specifically, the popular subject of double negative metamaterials. Professor Munk provides a comprehensive theoretical electromagnetic investigation of the issues and concludes that many of the phenomena claimed by researchers may be impossible. While denying the existence of negative refraction, the author provides convincing alternative explanations for some of the experimental examples in the literature. Although the debate on this subject is just beginning, Professor Munk has received support by various numerical simulations, winning him the encouragement of numerous experts in the field. The issues that are raised here have not been addressed thoroughly by the metamaterials community, and this book will serve as a catalyst for much healthy debate and discussion. Metamaterials: Critique and Alternatives is destined to become a classic resource for graduate students and researchers in electromagnetics, antenna theory, materials research, and chemistry.

The Second Edition of this book, while retaining the contents and style of the first edition, continues to fulfil the require-ments of the course curriculum in Electromagnetic Theory for the undergraduate students of electrical engineering, electronics and telecommunication engineering, and electro-nics and communication engineering. The text covers the modules of the syllabus corresponding to vectors and fields, Maxwell’s equations in integral form and differential form, wave propagation in free space and material media, transmission line analysis and waveguide principles. It explains physical and mathematical aspects of the highly complicated electromagnetic theory in a very simple and lucid manner. This new edition includes : • Two separate chapters on Transmission Line and Waveguide • A thoroughly revised chapter on Plane Wave Propagation • Several new solved and unsolved numerical problems asked in various universities’ examinations

This textbook presents a unified treatment of theory, analysis and design of microwave devices and circuits. It is designed to address the needs of undergraduate students of electronics and commun-i-cation engineering for a course in microwave engineering as well as those of the students pursuing M.Sc. courses in electronics science. The main objective is to provide students with a thorough under-standing of microwave devices and circuits, and to acquaint them with some of the methods used in circuit analysis and design. Several types of planar transmission lines such as stripline, microstrip, slot line and a few other structures have been explained. The important concepts of scattering matrix and Smith chart related to design problems have been discussed in detail. The performance and geometry of microwave transistors—both bipolar and field effect—have been analysed. Microwave passive components such as couplers, power dividers, attenuators, phase shifters and circulators have been comprehensively dealt with. Finally, the analysis and design aspects of microwave transistor amplifiers and oscillators are presented using the scattering parameters technique. Numerous solved problems and chapter-end questions are included for practice and reinforcement of the concepts.

This straightforward text examines the scientific principles, characterization techniques, and fabrication methods used to design and produce high quality optical fibers. Polymer Fiber Optics: Materials, Physics, and Applications focuses on the fundamental concepts that will continue to play a role in future research and applications. This book documents the underlying physics of polymer fibers, particularly aspects of light interaction, and details the practical considerations for a broad range of characterization techniques used to investigate new phenomena. The book presents basic fabrication techniques and protocols that will likely remain useful as new advances address specific processing challenges.
The author presents a fresh approach to standard derivations, using numerous figures and diagrams to break down complex concepts and illustrate theoretical calculations. The final chapters draw attention to the latest directions in research and novel applications, including photomechanical actuation, electro-optic fibers, and smart materials.

It gives thorough expert explanations, worked examples and plenty of exam practice in Physics calculations. It can be used as a course support book as well as for exam practice.

A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It covers transmission lines in all forms to illustrate how trace geometry defines where the signals can travel, then goes on to examine transmission lines as energy sources, the true nature of decoupling, types of resonances, ground bounce, cross talk, and more. Providing designers with the tools they need to lay out digital circuit boards for fast logic and to get designs working the first time around, Digital Circuit Boards: Reviews in simple terms the basic physics necessary to understand fast logic design Debunks the idea that electrical conductors carry power and signals, showing that signal travels in the spaces, not the traces, of circuit boards Explains logic circuit behavior through real-time analysis involving the fields and waves that carry signal and energy Provides new information on how ground/power planes work Outlines a software program for solving energy flow in complex networks

This Book Is Intended To Serve As A Textbook For A First Course In Microwave Engineering Which, Today, Is Included In The Engineering Undergraduate Curricula Of Almost All Universities And Institutions Of Higher Learning. This Book Is An Outgrowth Of The Classroom Lectures That The Author Has Been Giving At The Indian Institute Of Science, Bangalore, For Over Three Decades. It Attempts To Discuss The Basic Microwave Techniques, Starting With Transmission Lines. Throughout The Book, Emphasis Has Been Laid On Physical Principles. This Book Would Be Equally Useful To Postgraduates, Research Students And Practising R & D Engineers, For Self-Study And Also For Reference To Acquire A Better Understanding Of The Fundamentals Of Microwave Engineering.Complete Numerical/Analytical Solutions Of Some Typical Problems, And Sets Of Exercises With Answers, Have Been Given At The End Of Each Chapter. A Distinctive Feature Of This Book Is That All The Drawings And Graphs/Curves Are Computer-Generated Using Data Of Some Typical Practical Lines. Low Frequency Telephone And Telegraph Lines Have Also Been Discussed To A Fairly Good Depth.

The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The authors examine electrodynamics, multiconductor lines, and numerical methods for the modeling, simulation, analysis, and design of various super-wide-band slow-wave structures, including helical, meander, and gutter-type systems. The book features: The electrodynamic method for analysis of helical structures containing periodical inhomogeneities The multiconductor line method for analysis of complex helical, meander, and gutter-type wide-band slow-wave structures The method of moments for modeling and analysis of multiconductor lines containing a limited number of lines and meander structures with limited length Use of powerful software systems Microwave Office®, MICROWAVE STUDIO®, and MATLAB® for modeling, analysis, and design A synergy of various methods for investigating and designing wide-band slow-wave structures Solution of specific problems related to the design of wide-band and super-wide-band electrodynamic delay and deflection systems Principles of computer-aided design of slow-wave structures Presenting the theory, principles, properties, and applications of wide-band and super-wide-band slow-wave structures, this book will be of interest to students, engineers, researchers, and designers in the fields of electronic and microwave engineering.
This book presents the theory, analysis, and design of ultra-wideband (UWB) radar and sensor systems (in short, UWB systems) and their components. UWB systems find numerous applications in the military, security, civilian, commercial and medicine fields. This book addresses five main topics of UWB systems: System Analysis, Transmitter Design, Receiver Design, Antenna Design and System Integration and Test. The developments of a practical UWB system and its components using microwave integrated circuits, as well as various measurements, are included in detail to demonstrate the theory, analysis and design technique. Essentially, this book will enable the reader to design their own UWB systems and components. In the System Analysis chapter, the UWB principle of operation as well as the power budget analysis and range resolution analysis are presented. In the UWB Transmitter Design chapter, the design, fabrication and measurement of impulse and monocycle pulse generators are covered. The UWB Receiver Design chapter addresses the design and measurement of the strobe pulse generator, sampling mixer, low-noise amplifier and synchronous sampling receiver. Next, the UWB Antenna Design chapter details the design and measurement of two UWB antennas: the microstrip quasi-horn antenna and the UWB uniplanar antenna. The System Integration and Test chapter covers the transmission-reception test, signal processing, system integration, and evaluation of the UWB sensor. The final chapter provides a summary and conclusion of the work.

Copyright code: 9be4288e8cae8729c5f2367f6f7c659a